Bulletin of Forestry Science / Volume 8 / Issue 1 / Pages 149-162
previous article | next article

Response of forest insects to the climate change (case studies)

György Csóka, Anikó Hirka, Mariann Csepelényi, Levente Szőcs, Miklós Molnár, Katalin Tuba, Rudolf Hillebrand & Ferenc Lakatos

Correspondence

Correspondence: Csóka György

Postal address: H-3232 Mátrafüred, Hegyalja u. 18.

e-mail: csokagy[at]erti.hu

Abstract

There is a very tight relationship between insects and their environment, therefore if there is even the slightest change – due to climate change for instance, they react sensitively. This reaction can be very diverse. Their area can expand, their development time can change and consequently their number of generations can alter as well. Effect of factors influencing the size of the populations (natural enemies, mortality) can differ too. It should also be mentioned the sensitive interaction between herbivore insects and host plants in particular, where the insects can react very fast to the changes in the host plant (e.g. drought, stress caused by heat). Ultimately new species can appear, previously rare species can have mass outbreaks or their damage area can expand. We are demonstrating the changes of the last decades in six sample examples: oak lace bug (Corythucha arcuata), cockchafer (Melolontha melolontha), oak processionary moth (Thaumetopoea processionea), cotton bollworm (Helicoverpa armigera), gypsy moth (Lymantria dispar), in addition to the bark beetle damage in spruce stands.

Keywords: oak lace bug, cockchafer, oak processionary moth, cotton bollworm, gypsy moth, bark beetle damage, climate change

  • Allen J.C., Foltz J.L., Dixon W.N., Liebhold A.M., Colbert J.J., Regmere J., et al. 1993: Will the gypsy moth become a pest in Florida? The Florida Entomologist 76(1): 102–113. DOI: 10.2307/3496018
  • Ayres M.P. & Lombardero M.J. 2000: Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment 262(3): 263–286. DOI: 10.1016/S0048-9697(00)00528-3
  • Baker R., Caffier D., Choiseul J.W., Clercq P.De., Gerowitt B., Karadjova O.E., et al. 2009: Evaluation of a pest risk analysis on Thaumetopoea processionea L., the oak processionary moth, prepared by the UK and extension of its scope to the EU territory. The EFSA Journal 1195: 1–64. DOI: 10.2903/j.efsa.2009.1195
  • Battisti A. & Larsson S. 2015: Climate change and insect pest distribution range. In: Björkman C. & Niemelä P. (eds): Climate change and insect pests. Wallingford: CABI, 1–15. DOI: 10.1079/9781780643786.0001
  • Battisti A. 2008: Forests and climate change – lessons from insects. iForest – Biogeosciences and Forestry 1(1): 1–5. DOI: 10.3832/ifor0210-0010001
  • Battisti A., Larsson S. & Roques A. 2017: Processionary moths and associated urtication risk: global change–driven effects. Annual Review of Entomology 62: 323–342. DOI: 10.1146/annurev-ento-031616-034918
  • Bernardinelli I. & Zandigiacomo P. 2000: Prima segnalazione di Corythucha arcuata (Say) (Heteroptera, Tingidae) in Europa. Informatore Fitopatologico 50(12): 47–49.
  • Blaik T., Malkiewicz A. & Wasala R. 2011: Rediscovery and remarks on occurrence of Thaumetopoea processionea (Linnaeus, 1758) (Lepidoptera: Notodontidae: Thaumetopoeinae) in Poland. Wiadomości Entomologiczne 30(4): 246–256.
  • Bognár S. & Huzián L. 1979: Növényvédelmi állattan. Mezőgazdasági Kiadó, Budapest, 170–182.
  • Csepelényi M., Hirka A., Mikó Á., Szalai Á. & Csóka Gy. 2017a: A tölgy-csipkéspoloska (Corythucha arcuata) 2016/2017-es áttelelése Délkelet-Magyarországon. Növényvédelem 53(7): 285–288.
  • Csepelényi M., Hirka A., Szénási Á., Mikó Á., Szőcs L. & Csóka Gy. 2017b: Az inváziós tölgycsipkéspoloska [Corythucha arcuata (Say, 1832)] gyors terjeszkedése és tömeges fellépése Magyarországon. Erdészettudományi Közlemények 7(2): 127–134. DOI: 10.17164/ek.2017.009
  • Csóka Gy., Hirka A., Szőcs L., Móricz N., Rasztovits E. & Pödör Z. 2018: Weather-dependent fluctuations of Oak Processionary Moth (Thaumetopoea processionea L.) populations. European Journal of Entomology 115: 249–255. DOI: 10.14411/eje.2018.024
  • Csóka Gy. 1996: Aszályos évek – fokozódó rovarkárok erdeinkben. Növényvédelem 32: 545–551.
  • Csóka Gy. 2001: Recent invasions of five species of leafmining lepidoptera in Hungary. Proceedings „Integrated Management of Forest Defoliating Insects”. USDA General Technical Reports NE-277, 31–36.
  • Csóka Gy. 2016: A gyapottok bagolylepke (Helicoverpa armigera) terjedése Magyarországon. In: Riesz L. (ed): Magyarország környezeti állapota 2015. HOI, 62–64.
  • Csóka Gy. & Hirka A. 2009: A gyapjaslepke (Lymantria dispar L.) legutóbbi tömegszaporodása Magyarországon. Növényvédelem 45(4): 196–201.
  • Csóka Gy., Hirka A. & Somlyai M. 2013: A tölgycsipkéspoloska (Corythucha arcuata Say, 1832 – Hemiptera, Tingidae) első észlelése Magyarországon. Növényvédelem 49(7): 293–296.
  • Csóka Gy., Hirka A. & Szőcs L. 2012: Rovarglobalizáció a magyar erdőkben. Erdészettudományi Közlemények 2: 187–198. full text
  • Csóka Gy. 1997: Increased insect damage in Hungarian forests under drought impact. Biologia 52(2): 159–162.
  • Csóka Gy., Pödör Z., Nagy Gy. & Hirka A. 2015: Canopy recovery of pedunculate oak, Turkey oak and beech trees after severe defoliation by gypsy moth (Lymantria dispar): Case study from Western Hungary. Forestry Journal 61: 143–148. DOI: 10.1515/forj-2015-0022
  • Dobbertin M., Wermelinger B., Bigler C., Bürgi M., Carron M., Forster B., et al. 2007: Linking increasing drought stress to scots pine mortality and bark beetle infestations. The Scientific World Journal 7(1): 231–239. DOI: 10.1100/tsw.2007.58
  • Dobreva M., Simov N., Georgiev G., Mirchev P. & Georgieva M. 2013: First record of Corythucha arcuata (Say) (Heteroptera: Tingidae) on the Balkan Peninsula. Acta Zoologica Bulgaria 65(3): 409–412.
  • Endrődi S. 1956: Lemezescsápú bogarak Lamellicornia. In: Szélessy V. et al. (eds): Magyarország Állatvilága Fauna Hungariae IX. kötet, Coleoptera IV. 4. füzet, 106–188.
  • Forster B., Giacalone I., Moretti M., Dioli P. & Wermelinger B. 2005: Die amerikanische Eichennetzwanze Corythucha arcuata (Say) (Heteroptera, Tingidae) hat die Südschweiz erreicht. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 78(3-4): 317–323.
  • Gray D.R., Ravlin W.F., Régnière J. & Logan J.A. 1995: Further Advances Toward a Model of Gypsy Moth (Lymantria dispar (L.)) Egg Phenology: Respiration Rates and Thermal Responsiveness During Diapause, and Age-dependent Developmental Rates in Postdiapause. Journal of Insect Physiology 41: 247–256. DOI: 10.1016/0022-1910(94)00102-m
  • Gray D.R., Ravlin F.W. & Braine J.A. 2001: Diapause in the gypsy moth: a model of inhibition and development. Journal of Insect Physiology 47: 173–184. DOI: 10.1016/s0022-1910(00)00103-7
  • Gray D.R. 2004: The gypsy moth life stage model: landscape-wide estimates of gypsy moth establishment using a multi-generational phenology model. Ecological Modelling 176: 155–171. DOI: 10.1016/j.ecolmodel.2003.11.010
  • Groenen F. & Meurisse N. 2012: Historical distribution of the oak processionary moth Thaumetopoea processionea in Europe suggests recolonization instead of expansion. Agricultural and Forest Entomology 14(2): 147–155. DOI: 10.1111/j.1461-9563.2011.00552.x
  • Groenen F. 2010: Variation of Thaumetopoea processionea (Notodontidae: Thaumetopoeinae) in Europe and the Middle East. Entomologische Berichten 70(3): 77–82.
  • Győrfi J. 1950: Szúkárosítások a hazai Lucfevesekben. Agrártudományi Egyetem Erdőmérnöki Karának Évkönyve, 383–394.
  • Győrfi J. 1954: A cserebogár-kérdés jelenlegi helyzete. Az Erdő 3(1-2): 24–33. full text
  • Győrfi J. 1963: Erdővédelemtan. Akadémiai Kiadó, Budapest.
  • Hirka A. & Csóka Gy. 2010: Kevésbé ismert lombfogyasztó rovarok tömeges megjelenése hazai nemesnyár-ültetvényeken. Növényvédelem 46(11): 529–531.
  • Hirka A. (ed) 2012: A 2011. évi biotikus és abiotikus erdőgazdasági károk, valamint a 2012-ben várható károsítások. Erdészeti Tudományos Intézet Erdővédelmi Osztály, Mátrafüred.
  • Hirka A., Csóka Gy. & Szőcs L. 2011: Long term population trends of some forest pests in Hungary. In: Delb H. & Pontuali S. (eds): Biotic Risks and Climate Change in Forests, Proceedings of the 10th IUFRO Workshop of WP 7.03.10 „Methodology of Forest Insect and Disease Survey in Central Europe”, September 20-23, 2010, Freiburg, Germany, 163–165.
  • Hlásny T. & Turčáni M. 2008: Insect pests as climate change driven disturbances in forest ecosystems. In: Střelcová K. et al. (eds) Bioclimatology and Natural Hazards. Springer, Dordrecht, 165–177. DOI: 10.1007/978-1-4020-8876-6_15
  • Hlásny T., Trombik J., Holuša J., Lukášová K., Grendár M., Turčáni M., et al. 2015: Multi-decade patterns of gypsy moth fluctuations in the Carpathian Mountains and options for outbreak forecasting. Journal of Pest Science 89(2): 413–425. DOI: 10.1007/s10340-015-0694-7
  • Hoch G., Toffolo E.P., Netherer S., Battisti A. & Schopf A. 2009: Survival at low temperature of larvae of the pine processionary moth Thaumetopoea pityocampa from an area of range expansion. Agricultural and Forest Entomology 11(3): 313–320. DOI: 10.1111/j.1461-9563.2009.00431.x
  • Homonnay F. 1973: A májusi cserebogár (Melolontha melolontha L.) törzsek hazai elhelyezkedése, térhódítása és keveredése. A növényvédelem korszerűsítése 7: 31–41.
  • Homonnay F. 1977: A fénycsapdák alkalmazásának jelentősége a Melolontha fajok rajzásának, ivararányának és tömegszaporodásának kutatásában. Növényvédelem 13(4): 152–159.
  • Hrašovec B., Posarić D., Lukić I. & Pernek M. 2013: Prvi nalaz hrastove mrežaste stjenice (Corythucha arcuata) u Hrvatskoj. Šumarski list 137(9-10): 499–503.
  • Jactel H., Petit J., Desprez-Loustau M.L., Delzon S., Piou D., Battisti A., et al. 2012: Drought effects on damage by forest insects and pathogens: a meta-analysis. Global Change Biology 18(1): 267–276. DOI: 10.1111/j.1365-2486.2011.02512.x
  • Janik G., Tóth J., Csóka Gy., Szabóky Cs., Hirka A. & Koltay A. 2008: Az erdészeti jelentőségű cserebogarak életmódja. Az Erdészeti kutatások digitális, ünnepi különszáma az OEE 139. Vándorgyűlésének tiszteletére. Cikkgyűjtemény: 350–380.
  • Jeffs C.T. & Lewis O.T. 2013: Effects of climate warming on host-parasitoid interactions. Ecological Entomology 38(3): 209–218. DOI: 10.1111/een.12026
  • Jepsen J.U., Hagen S.B., Ims R.A. & Yoccoz N.G. 2008: Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. Journal of Animal Ecology 77(2): 257–264. DOI: 10.1111/j.1365-2656.2007.01339.x
  • Jönsson A.M., Appelberg G., Harding S. & Bärring L. 2009: Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Global Change Biology 15(2): 486–499. DOI: 10.1111/j.1365-2486.2008.01742.x
  • Jurásek F. & Román J. 1997: A „Soproni fenyveserdő” végnapjai …? Erdészeti Lapok 132(10): 313–315. full text
  • Kalinkat G. & Rall B.C. 2015: Effects of climate change on the interactions between insect pests and their natural enemies. In: Björkman C. & Niemala P. (eds): Climate change and insect pests. Wallingford: CABI, 74–91. DOI: 10.1079/9781780643786.0074
  • Keszthelyi S., Nowinszky L., & Puskás J. 2013: The growing abundance of Helicoverpa armigera in Hungary and its areal shift estimation. Open Life Sciences 8(8): 756–764. DOI: 10.2478/s11535-013-0195-0
  • Klapwijk M.J., Csóka Gy., Hirka A. & Björkman C. 2013: Forest insects and climate change: long-term trends in herbivore damage. Ecology and Evolution 3(12): 4183–4196. DOI: 10.1002/ece3.717
  • Lakatos F. 1997: Szúkárosítások alakulása a Soproni-hegyvidéken. Erdészeti Lapok 132(10): 325–326. full text
  • Lakatos F. & Molnár M. 2009: Mass mortality of beech (Fagus sylvatica L.) in South-West Hungary. Acta Silvatica et Lignaria Hungarica 5: 75–82. full text
  • Leskó K. & Szabóky Cs. 2003: Új károsító az akácon a gyapottok bagolylepke (Helicoverpa armigera Hübner, 1808). Erdészeti Lapok 138(3): 96–97. full text
  • Leskó K., Szentkirályi F. & Kádár F. 1995: Long term fluctuation pattern of the brown-tale moth (Euproctis chrysorrhoea L.) Hungarian population. Erdészeti Kutatások 85: 169–185.
  • Leskó K., Szentkirályi F. & Kádár F. 1998: An analysis of fluctuation pattern of geometrid moths based on long term (1961-1997) light trap and damage data time series in Hungary. Erdészeti Kutatások 88: 319–333.
  • Lövgren R. & Dalsved B. 2005: Thaumetopoea processionea L. (Lepidoptera: Thaumetopoeidae) found in Sweden. Entomologisk Tidskrift 126(1-2): 93–94.
  • Marini L., Økland B., Jönsson A.M., Bentz B., Carroll A., Forster B., et al. 2017: Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40: 1426–1435. DOI: 10.1111/ecog.02769
  • Mattson W.J. & Haack R.A. 1987: Role of Drought in Outbreaks of Plant-Eating Insects The role of drought in outbreaks of plant-eating insects drought’s physiological effects on plants can predict its influence on insect populations. Bioscience 37(2): 110–118. DOI: 10.2307/1310365
  • Mindlin M.J., Polain O., Waroux D., Case S. & Walsh B. 2012: The arrival of oak processionary moth, a novel cause of itchy dermatitis, in the UK : Experience, lessons and recommendations. Public Health 126(9): 778–781. DOI: 10.1016/j.puhe.2012.06.007
  • Mirchev P., Georgiev G., Georgieva M. & Bocheva L. 2016: Impact of low temperatures on pine processionary moth (Thaumetopoea pityocampa) larval survival in Bulgaria. Silva Balcanica 17(1): 51–58.
  • Molnár M., Brück-Dyckhoff C., Petercord R. & Lakatos F. 2010: A zöld karcsúdíszbogár (Agrilus viridis L.) szerepe a bükkösök pusztulásában. Növényvédelem 46(11): 522–528.
  • Mutun S. 2003: First report of the oak lace bug, Corythucha arcuata (Say, 1832) (Heteroptera: Tingidae) from Bolu, Turkey. Israel Journal of Zoology 49: 323–324.
  • Netherer S., Matthews B., Katzensteiner K., Blackwell E., Henschke P., Hietz P., et al. 2015: Do water-limiting conditions predispose Norway spruce to bark beetle attack? The New Phytologist 205(3): 1128–1141. DOI: 10.1111/nph.13166
  • Nowinszky L. & Nagy L. 1977: Új matematikai módszer a májusi cserebogár (Melolontha melolontha L.) rajzáskezdetének kiszámítására. Növényvédelem 13(8): 337–340.
  • Pelini S.L., Prior K.M., Parker D.J., Dzurisin J.D.K., Lindroth R.L. & Hellmann J.J. 2009: Climate Change and Temporal and Spatial Mismatches in Insect Communities. In: Letcher T.M. (ed): Climate Change (1st ed.). Elsevier, Amsterdam, 215–231. DOI: 10.1016/B978-0-444-53301-2.00011-7
  • Pimentel C., Calvão T. & Ayres M.P. 2011: Impact of climatic variation on populations of pine processionary moth Thaumetopoea pityocampa in a core area of its distribution. Agricultural and Forest Entomology 13(3): 273–281. DOI: 10.1111/j.1461-9563.2011.00520.x
  • Pimentel C., Calvão T., Santos M., Ferreira C., Neves M. & Nilsson J.Å. 2006: Establishment and expansion of a Thaumetopoea pityocampa (Den. & Schiff.) (Lep. Notodontidae) population with a shifted life cycle in a production pine forest, Central-Coastal Portugal. Forest Ecology and Management 233(1): 108–115. DOI: 10.1016/j.foreco.2006.06.005
  • Ponomarev V.I., Benkovskaya G.V. & Klobukov G.I. 2014: Effect of Heat Stress on Morphophysiological Characteristics and Biochemical Parameters of Stress Response in Gypsy Moth (Lymantria dispar L.) Larvae. Russian Journal of Ecology 45(4): 275–281. DOI: 10.1134/s1067413614040080
  • Pureswaran D.S., Roques A. & Battisti A. 2018: Forest Insects and Climate Change. Current Forestry Reports 4(2): 35–50. DOI: 10.1007/s40725-018-0075-6
  • Robinet C. & Roques A. 2010: Direct impacts of recent climate warming on insect populations. Integrative Zoology 5(2): 132–142. DOI: 10.1111/j.1749-4877.2010.00196.x
  • Roth M. 2003: Szúgradáció kialakulásának feltételei és lefolyása a Soproni-hegységben 1987-2001. Erdészeti Lapok 138(12): 356–358. full text
  • Roques A., Rousselet J., Avci M., Avtzis D.N., Basso A., Battisti A., et al. 2015: Climate warming and past and present distribution of the processionary moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa. In: Roques A. (ed): Processionary moths and climate change : an update. Springer Netherlands, Dordrecht, 22: 81–161. DOI: 10.1007/978-94-017-9340-7_3
  • Rouault G., Candau J-N., Lieutier F., Nageleisen L-M., Martin J-C. & Warzée N. 2006: Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Annals of Forest Science 63(6): 613–624. DOI: 10.1051/forest:2006044
  • Sawyer A.J., Tauber M.J., Tauber C.A. & Ruberson J.R. 1993: Gypsy moth (Lepidoptera: Lymantriidae) egg development: a simulation analysis of laboratory and field data. Ecological Modelling 66: 121–155. DOI: 10.1016/0304-3800(93)90043-r
  • Sparks T.H., Roy D.B. & Dennis R.L.H. 2005: The influence of temperature on migration of Lepidoptera into Britain. Global Change Biology 11(3): 507–514. DOI: 10.1111/j.1365-2486.2005.00910.x
  • Stigter H. & Romeijn G. 1992: Thaumetopoea processionea na ruim een eeuw weer plaatselijk massaal in Nederland (Lepidoptera: Thaumetopoeidae). Entomologische berichten 55: 66–69.
  • Straw N.A. & Williams D.T. 2013: Impact of the leaf miner Cameraria ohridella (Lepidoptera: Gracillariidae) and bleeding canker disease on horse-chestnut: Direct effects and interaction. Agricultural and Forest Entomology 15: 321–333. DOI: 10.1111/afe.12020
  • Szabóky Cs., & Szentkirályi F. 1995: A gyapottok-bagolylepke (Helicoverpa armigera Hübner, 1808) szezonalitása az erdészeti fénycsapdák gyűjtései alapján. Növényvédelem 31(6): 267–274.
  • Szeőke K. & Csóka Gy. 2012: Jövevény kártevő ízeltlábúak Magyarországon – Lepkék (Lepidoptera). Növényvédelem 48(3): 105–115.
  • Szép T. 2005: Szúkárosítás a Szombathelyi Erdészeti Rt. területén. Erdészeti Lapok 140(12): 351–353. full text
  • Szép T. 2008: Vas megye lucfenyő nélkül? Erdészeti Lapok 143(4): 120–121. full text
  • Szőcs L., Gimesi L., Hirka A., & Csóka Gy. 2018: Trendek a gyapottok bagolylepke (Helicoverpa armigera) magyarországi populációs fluktuációiban és rajzásfenológiájában. Kézirat.
  • Tóth L. 1976: A májusi cserebogár (Melolontha melolontha L.) rajzáskezdet-előrejelzési lehetőségeinek vizsgálata. Növényvédelem 12(5): 221–222.
  • Tuba K., Horváth B. & Lakatos F. 2012: Inváziós rovarok fás növényeken. Nyugat-magyarországi Egyetem Kiadó, Sopron.
  • Turcani M., Csóka Gy., Grodzki W. & Zahradnik P. 2001: Recent invasions of forest insect pests in Central Europe. Protection of World Forests from Insect Pests: Advances in Research. Papers presented at the XXI IUFRO World Congress 7-12 August 2000, Kuala Lumpur, Malaysia. IUFRO World Series Vol. 11. 99-104.
  • Vanhanen H., Veteli T.O., Paivinen S., Kellomaki S. & Niemela P. 2007: Climate change and range shifts in two insect defoliators: gypsy moth and nun moth – a model study. Silva Fennica 41(4): 621–638. DOI: 10.14214/sf.469
  • Wagenhoff E. & Veit H. 2011: Five years of continuous Thaumetopoea processionea monitoring: tracing population dynamics in an arable landscape of South-Western Germany. Gesunde Pflanzen 63(2): 51–61. DOI: 10.1007/s10343-011-0244-z
  • Wagenhoff E., Blum R., Engel K., Veit H. & Delb H. 2013: Temporal synchrony of Thaumetopoea processionea egg hatch and Quercus robur budburst. Journal of Pest Science 86(2): 193–202. DOI: 10.1007/s10340-012-0457-7
  • Wagenhoff E., Wagenhoff A., Blum R., Veit H., Zapf D. & Delb H. 2014: Does the prediction of the time of egg hatch of Thaumetopoea processionea (Lepidoptera: Notodontidae) using a frost day/temperature sum model provide evidence of an increasing temporal mismatch between the time of egg hatch and that of budburst of Quercus. European Journal of Entomology 111(2): 207–215. DOI: 10.14411/eje.2014.030
  • Skule B. & Vilhelmsen F. 1997: Thaumetopoea processionea L. found in Denmark. Available from / Letöltve: 2017.05.30. URL
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Csóka, Gy., Hirka, A., Csepelényi, M., Szőcs, L., Molnár, M., Tuba, K., Hillebrand, R. & Lakatos, F. (2018): Response of forest insects to the climate change (case studies). Bulletin of Forestry Science, 8(1): 149-162. (in Hungarian) DOI: 10.17164/EK.2018.010

    Volume 8, Issue 1
    Pages: 149-162

    DOI: 10.17164/EK.2018.010

    First published:
    30 May 2018

    Related content

    2

    More articles
    by this authors

    19

    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

  • Csóka, Gy., Hirka, A. & Szőcs, L. (2012): Insect globalization in the Hungarian forests. Bulletin of Forestry Science, 2(1): 187-198.
  • Szőcs, L., Melika, G. & Csóka, Gy. (2013): Data on the parasitoid complexes of leaf mining insects on oaks. Bulletin of Forestry Science, 3(1): 251-259.
  • Janik, G., Hirka, A., Koltay, A., Juhász, J. & Csóka, Gy. (2016): 50 years biotic damage in the Hungarian beech forests. Bulletin of Forestry Science, 6(1): 45-60.
  • Hirka, A., Pödör, Z., Garamszegi, B. & Csóka, Gy. (2018): 50 years trends of the forest drought damage in Hungary (1962-2011). Bulletin of Forestry Science, 8(1): 11-25.
  • Fürjes-Mikó, Á., Csősz, S. & Csóka, Gy. (2019): Role of red wood ants (Formica rufa group) in forest protection in europe – a literature review. Bulletin of Forestry Science, 9(1): 35-50.
  • Korda, M., Ripka, G., Hirka, A. & Csóka, Gy. (2022): Rapid spread and presently known distribution of Aceria fraxiniflora (Felt) (Acari: Eriophyoidea) in Hungary. Bulletin of Forestry Science, 12(2): 121-128.
  • Eötvös, Cs. B., Hirka, A., Gimesi, L., Lövei, G., Gáspár, Cs. & Csóka, Gy. (2023): Estimation of spring caterpillar biomass in hungarian deciduous forests from long-term light trap data – what will the insectivorous bird nestlings eat?. Bulletin of Forestry Science, 13(1): 5-20.
  • Eötvös, Cs. B., Tóth, M., Hirka, A., Fürjes-Mikó, Á., Gáspár, Cs., Paulin, M., Lakatos, F. & Csóka, Gy. (2023): Factors influencing the short-distance spread of oak lace bug [Corythucha arcuata Say, 1832)] in hungarian oak forests. Bulletin of Forestry Science, 13(2): 131-144.
  • Szanyi, Sz., Szőcs, L. & Varga, Z. (2015): The zoogeographical and ecological characteristics of Macroheterocera fauna of the Bockerek forest reserve. Bulletin of Forestry Science, 5(1): 119-128.
  • Molnár, M. (2014): Significance of Wood Small-reed (Calamagrostis epigeios) in Hungarian silviculture by questionnaire survey. Bulletin of Forestry Science, 4(1): 159-169.
  • Bali, L., Szinetár, Cs., Andrési, D., Tuba, K. & Kálmán, K. (2017): Pitfall trapping arachnological survey in the Educational Forest of Ásotthalom. Bulletin of Forestry Science, 7(1): 69-84.
  • Andrési, R., Janik, G., Fürjes-Mikó, Á., Eötvös, Cs. B. & Tuba, K. (2018): Faunistical studies on coleoptera of tinder conk [Fomes fomentarius (L. ex. Fr.) Kickx.] in Hungary. Bulletin of Forestry Science, 8(2): 71-82.
  • Bali, L., Andrési, D., Ferka, R., Tuba, K. & Szinetár, Cs. (2019): Pitfall trapping arachnological survey in the Szalafő Forest Reserve. Bulletin of Forestry Science, 9(2): 99-112.
  • Bali, L., Tuba, K. & Szinetár, Cs. (2020): Arachnological survey of the Roth selection forest. Bulletin of Forestry Science, 10(2): 109-124.
  • Bali, L., Andrési, D., Tuba, K. & Szinetár, Cs. (2021): Ground-dwelling spider fauna of the Nyíri-forest near Kecskemét, Hungary. Bulletin of Forestry Science, 11(2): 115-129.
  • Balázs, B. G., Tuba, K. & Lakatos, F. (2021): The role of microorganisms in the ecology of bark beetles (Curculionidae, Scolytinae). Bulletin of Forestry Science, 11(2): 131-142.
  • Andrési, D. & Lakatos, F. (2014): Investigations of ground beetle assemblages in an artifical gap of Balaton Uplands (Hungary). Bulletin of Forestry Science, 4(1): 171-183.
  • Horváth, B. & Lakatos, F. (2014): Study on the diversity of nocturnal Macrolepidoptera communities in different age sessile oak – hornbeam forests. Bulletin of Forestry Science, 4(1): 185-196.
  • Fábián, A., Lakatos, F., Elekné, F. V., Őrsi, Á., Náhlik, A. & Polgár, A. (2024): Applied sustanibility modell of the University of Sopron. Bulletin of Forestry Science, 14(1): 5-6.
  • * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.