Bulletin of Forestry Science / Volume 1 / Issue 1 / Pages 29-43
previous article | next article

High resolution digital soil mapping in the Vaskereszt forest reserve

Gábor Illés, Gábor Kovács & Bálint Heil

Correspondence

Correspondence: Illés Gábor

Postal address: H-1277 Budapest, Pf. 17.

e-mail: illesg[at]erti.hu

Abstract

Using the digital soil mapping methods we made the soil map of Vaskereszt forest reserve. Soil samples were collected applying stratified random sampling. 138 sample sites were appointed where soil-types were determined. We used the digital elevation model, soil data, and geological data in order to produce soil map. To predict soil information for the areas between sample points general discriminant-, classification tree, and artificial neural network analysis were applied, in which relief and geological variables were predictors. Soil map was developed first using each method separately, and second using them simultaneously. Their prediction accuracies were compared. We concluded that these methods are able to derive soil maps however the classification accuracies are uneven, ranging between 66-92%. The soil map that was derived by the joint application of the three methods obtained 10% improvement in the overall accuracy.

Keywords: digital soil mapping, spatial prediction, forest reserve

  • Bakacsi, Zs.; Kuti, L.; Pásztor, L.; Vatai, J.; Szabó, J. and Müller, T. 2010: Method for the compilation of a stratified and harmonized soil physical database using legacy and up-to-date data sources. Agrokémia és Talajtan 59: 39–46. DOI: 10.1556/Agrokem.59.2010.1.5
  • Behrens, T.; Förster, H.; Scholten, T.; Steinrücken, U.; Spies, E-D. and Goldschmitt, M. 2005: Digital soil mapping using artificial neural networks. Journal of Plant Nutrition and Soil Science 168: 21–33. DOI: 10.1002/jpln.200421414
  • Behrens, T. and Scholten, T. 2007: A comparison of data-mining techniques in predictive soil mapping. In: Lagacherie et al (eds): Digital Soil Mapping an Introductory Perspective. Developments in Soil Science 31: 353–365. DOI: 10.1016/s0166-2481(06)31025-2
  • Behrens, T.; Schmidt, K. and Scholten, T. 2008: An approach to removing uncertainties in nominal environmental covariates and soil class maps. In: Hartemink, A.E.; McBratney, A.B. and Mendonça Santos, M.L. (eds): Digital Soil Mapping withlimited data. Springer. 213–224. DOI: 10.1007/978-1-4020-8592-5_18
  • Bishop, T.F.A.; Minasny, B. and McBratney, A.B. 2006: Uncertainty analysis for soil-terrain models. International Journal of Geographical Information Science 20 (2): 117–134. DOI: 10.1080/13658810500287073
  • Broyden, C.G. 1970: The convergence of a class of double-rank minimization algorithms. Journal of the Institute of Mathematics and Its Applications. 6: 76–90. DOI: 10.1093/imamat/6.1.76
  • Carré, F. and Boettinger, J.L. 2008: Synthesis and priorities for future work in digital soil mapping. In: Hartemink, A.E.; McBratney, A.B. and Mendonça Santos, M.L. (eds): Digital Soil Mapping with limited data. Springer. 399–403. DOI: 10.1007/978-1-4020-8592-5_35
  • Dobos, E. and Hengl, T. 2009: Soil Mapping Applications. In: Hengl, T., and Reuter, H.I. (eds): Geomorphometry Concepts, Software, Applications. Elsevier. 461–479. DOI: 10.1016/s0166-2481(08)00020-2
  • Giasson, E.; Clarke, R.T.; Inda, A.V.; Merten, G.H. and Tornquist, C.G. 2006: Digital soil mapping using multiple logistic regressions on terrain parameters in Southern Brazil. Scientia Agricola 63 (3): 262–268. DOI: 10.1590/s0103-90162006000300008
  • Hengl, T. and Reuter, H.I. (eds) 2007: Geomorphometry Concepts, Software, Application. Developments in Soil Science 33: 765 pp.
  • Jenness, J. 2006: Topographic Position Index (tpi_jen.avx) extension for ArcView 3.x, v. 1.3a. Jenness Enterprises. [Online] URL
  • Lagacherie, P.; McBratney, A.B. and Voltz, M. (eds) 2007: Digital Soil Mapping an Introductory Perspective. Developments in Soil Science 31: 595 p. DOI: 10.1016/s0166-2481(06)x3100-8
  • Lagacherie, P. 2008: Digital Soil Mapping: State of the Art. In: Hartemink, A.E.; McBratney, A.B. and Mendonça Santos, M.L. (eds): Digital Soil Mapping with limited data. Springer. 3–15. DOI: 10.1007/978-1-4020-8592-5_1
  • Mayr, T.R. and Palmer, B. 2007: Digital Soil Mapping: An England and Wales perspective. In: Lagacherie et al (eds): Digital Soil Mapping an Introductory Perspective. Developments in Soil Science 31: 365–377. DOI: 10.1016/s0166-2481(06)31026-4
  • McBratney, A.B.; Mendonça Santos, M.L. and Minasny, B. 2003: On digital soil mapping. Geoderma 117: 3–52. DOI: 10.1016/S0016-7061(03)00223-4
  • Minasny, B. and McBratney, A.B. 2007a: Spatial prediction of soil properties using EBLUP with the Matern covariance function. Geoderma 140 (4): 324–336. DOI: 10.1016/j.geoderma.2007.04.028
  • Minasny, B. and McBratney, A.B. 2007b: Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes. Geoderma 142: 285–293. DOI: 10.1016/j.geoderma.2007.08.022
  • Pásztor, L.; Szabó, J. and Bakacsi, Zs. 2010: Digital processing and upgrading of legacy data collected during the 1:25.000 scale Kreybig soil survey. Acta Geodaetica et Geophysica Hungarica 45: 127–136. DOI: 10.1556/ageod.45.2010.1.18
  • Scull, P.; Franklin, J.; Chadwick, O.A. and McArthur, D. 2003: Predictive Soil Mapping: a review. Progress in Physical Geography 27 (2): 171–197. DOI: 10.1191/0309133303pp366ra
  • Smith, M.P.; Zhu, A.X.; Burt, J.E. and Stiles, C. 2006: The effects of DEM resolution and neighborhood size on digital soil. Geoderma 137 (1–2): 58–69. DOI: 10.1016/j.geoderma.2006.07.002
  • Zhu, J.; Morgan, C.L.S.; Norman, J.M.; Yue Wei and Lowery, B. 2004: Combined mapping of soil properties using a multiscale tree-structured spatial model. Geoderma 118: 321–334. DOI: 10.1016/s0016-7061(03)00217-9
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Illés, G., Kovács, G. & Heil, B. (2011): High resolution digital soil mapping in the Vaskereszt forest reserve. Bulletin of Forestry Science, 1(1): 29-43. (in Hungarian)

    Volume 1, Issue 1
    Pages: 29-43

    First published:
    1 September 2011

    Related content

    3

    More articles
    by this authors

    9

    Related content in the Bulletin of Forestry Science*

    More articles by this authors in the Bulletin of Forestry Science

  • Kovács, G., Illés, G., Mészáros, D., Szabó, O., Vigh, A. & Heil, B. (2012): Evaluation of changes of site parameters in the Noszlop forest district. Bulletin of Forestry Science, 2(1): 47-60.
  • Illés, G., Kollár, T., Veperdi, G. & Führer, E. (2014): Forests’ yield and height growth dependence on site conditions in County Zala Hungary. Bulletin of Forestry Science, 4(2): 77-89.
  • Illés, G. & Fonyó, T. (2016): Assessing the expected impact of climate change on forest yield potential in the AGRAGIS project. Bulletin of Forestry Science, 6(1): 25-34.
  • Illés, G. (2018): Predicting the climate change induced yield potential changes of sessile oak stands. Bulletin of Forestry Science, 8(1): 105-118.
  • Borovics, A., Illés, G., Juhász, J., Móricz, N., Rasztovits, E., Nimmerfroh-Pletscher, B., Unghváry, F., Pintér, T., Pödör, Z. & Jereb, L. (2018): The necessity and steps of establishing a forestry climate centre. Bulletin of Forestry Science, 8(2): 5-8.
  • Illés, G. & Móricz, N. (2022): Investigating the climate analogue area of domestic tree species in the light of climate change. Bulletin of Forestry Science, 12(2): 91-112.
  • Illés, G. & Schiberna, E. (2024): Assessing afforestation potential on the basis of ecological datasets. Bulletin of Forestry Science, 14(1): 7-8.
  • Bartha, D., Korda, M., Kovács, G. & Tímár, G. (2014): Nationwide comparison of potential natural forest communities and current forest stands. Bulletin of Forestry Science, 4(1): 7-21.
  • Heilig, D., Heil, B. & Kovács, G. (2018): Effects of spacing control on dendromass yield in short rotation hybrid poplar plantation. Bulletin of Forestry Science, 8(2): 51-59.
  • * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.