Bulletin of Forestry Science / Volume 12 / Issue 2 / Pages 91-112
previous article | next article

Investigating the climate analogue area of domestic tree species in the light of climate change

Gábor Illés & Norbert Móricz

Correspondence

Correspondence: Illés Gábor

Postal address: 9600 Sárvár, Várkerület u. 30/A.

e-mail: illes.gabor[at]uni-sopron.hu

Abstract

We performed the climate envelope analysis of nine stand forming tree species, which are native not only in wider Europe but in Hungary as well. We identified climate analogue areas in order to evaluate the impact of climate change on forests. Beside the European tree species distribution database we used the bioclimatic variables of – not only the historical climate records but – an ensemble of climate models, which are based on the RCP 4.5 and RCP 8.5 scenarios. The investigated four periods were: the past period of 1961–1990, the present period of 2011–2040, the near future period of 2041–2070, and the far future period of 2071–2100. The spatial rearrangements of species’ climate envelopes were modelled by the method of random forests with the exclusion of extrapolated areas. The results showed that the models predicted reliably the historical distribution areas of species. The models predicted significant rearrangements in the spatial extents of the species’ climate envelopes for the future-, and even for the present period. Considering the Hungarian aspects we concluded that, according to the optimistic scenario, by the end of this century, the spatial extent of suitable areas for oak species may drop to one fifth of the value measured at the turn of the 2000s. The only exception is downy oak, whose suitable area can multiply at the expense of other oak species. Another species on the losing side is beech whose climatically suitable area can reduce to one tenth of its former value. Beside the above, black pine can gain more and more areas. According to the models, the extent of the areas for which it will probably not be possible to find climate analogue provenances in Europe increases by two to three times. The modeling results of the climate envelopes of tree species can provide guidelines for climate adaptation, i.e. the identification of threatened areas and the selection of source and destination areas for reproductive material.

Keywords: climate analogue areas, decision support, climatic vulnerability of trees, sources of propagation material

  • Allen C.D., Breshears D.D. & McDowell N.G. 2015: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6: 1–55. DOI: 10.1890/ES15-00203.1
  • Anderegg W.R.L., Hicke J.A., Fisher R.A., Allen C.D., Aukema J., Bentz B., Hood S., Lichstein J.W., Macalady A.K., McDowell N., Pan Y.D., Raffa K., Sala, Shaw J.D., Stephenson N.L., Tague C. & Zeppel M. 2015: Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208(3): 674-683. DOI: 10.1111/nph.13477
  • Barbet-Massin M., Jiguet F., Albert C.H. & Thuiller W. 2012: Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3: 327–338. DOI: 10.1111/j.2041-210X.2011.00172.x
  • Bodribb T.J., Powers J., Cochard H. & Choat B. 2020: Hanging by a thread? Forests and drought. Science 368(6488): 261–266. DOI: 10.1126/science.aat7631.
  • Buras A., Schunk C., Zeiträg C., Herrmann C., Kaiser L., Lemme H. et al. 2018: Are Scots pine forest edges particularly prone to drought-induced mortality? Environ. Res. Lett. 13: 025001. DOI: 10.1088/1748-9326/aaa0b4
  • Bura s A. & Menzel A. 2019: Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios. Front. Plant Sci. 9:1986. doi: 10.3389/fpls.2018.01986
  • Breiman L. 2001: Random forests. Statistics Department. University of California, Berkeley. pp.32. https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
  • Cailleret M., Jansen S., Robert E.M.R., Desoto L., Aakala T., Antos J.A. et al. 2017: A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23: 1675–1690. DOI: 10.1111/gcb.13535
  • Chakraborty D., Wang T., Andre K., Konnert M., Lexer M.J., Matulla C. & Schüler S. 2015: Selecting populations for non-analogous climate conditions using universal response functions: The case of Douglas-fir in central Europe. PloS one 10(8), e0136357
  • Choat B., Brodribb T.J., Brodersen C.R., Duursma R.A., López R. & Medlyn B.E. 2018: Triggers of tree mortality under drought. Nature 558: 531–539. DOI: 10.1038/s41586-018-0240-x
  • Corlett R.T., & Westcott D.A. 2013: Will plant movements keep up with climate change? Trends in Ecology & Evolution 28(8): 482–488. DOI: 10.1016/j.tree.2013.04.003
  • Czúcz B., Gálhidy L. & Mátyás C. 2011: Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science 68: 99–108. DOI: 10.1007/s13595-011-0011-4
  • Darwish A., Leukert K. & Reinhardt W. 2003: „Image segmentation for the purpose of object-based classification,” IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), 2039-2041, DOI: 10.1109/IGARSS.2003.1294332
  • Fekete I., Lajtha K., Kotroczó Z., Várbíró G., Varga C., Tóth J.A. et al. 2017: Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest. Glob. Change Biol. 23: 3154–3168. DOI: 10.1111/gcb.13669
  • Fischer G., Nachtergaele F., Prieler S., van Velthuizen H.T., Verelst L., & Wiberg D. 2008: Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy.
  • Führer E., Horváth L., Jagodics A., Machon A. & Szabados I. 2011: Application of a new aridity index in Hungarian forestry practice. Időjárás 115(3): 103–118.
  • Gálos B., Führer E., Czimber K., Gulyás K., Bidló A., Hänsler A., Jacob D. & Mátyás Cs. 2015: Climatic threats determining future adaptive forest management – a case study of Zala County. Idõjárás 119(4): 425–441.
  • Hargreaves G.H. & Allen R.G. 2003: History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering 129(1): 53–63. DOI: 10.1061/(ASCE)0733-9437(2003)129:1(53)
  • Halofsky J.E., Peterson D.L. & Prendeville H.R. 2018: Assessing vulnerabilities and adapting to climate change in northwestern U.S. forests. Clim. Change 146: 89–102. DOI: 10.1007/s10584-017- 1972-6
  • Hanewinkel M., Cullmann D., Schelhaas M.J. et al. 2013: Climate change may cause severe loss in the economic value of European forest land. Nature Clim Change 3: 203–207. DOI: 10.1038/nclimate1687
  • Hengl T., de Jesus J.M., MacMillan R.A., Batjes N.H., Heuvelink G.B.M. et al. 2014: SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE 9(8): e105992. DOI: 10.1371/journal.pone.0105992
  • Higgins S.I., Larcombe M.J., Beeton N.J., Conradi T. & Nottebrock H. 2020: Predictive ability of a process-based versus a correlative species distribution model. Ecol Evol. 10: 11043–11054. DOI: 10.1002/ece3.6712
  • Illés G. & Móricz N. 2022: Species distribution of nine European tree species. DOI: 10.6084/m9.figshare.19614435.v1
  • Járó Z. 1972: A termõhely fogalma. In: Danszky I. (ed.): Erdőművelés I. 47–87.
  • Kern A., Marjanović H., Csóka Gy., Móricz N., Pernek M., Hirka A., Matošević D., Paulin M. & Kovač G. 2021: Detecting the oak lace bug infestation in oak forests using MODIS and meteorological data. Agricultural and Forest Meteorology 306(1): 108436. DOI: 10.1016/j.agrformet.2021.108436
  • Kuuluvainen T. 2016: Conceptual models of forest dynamics in environmental education and management: keep it as simple as possible, but no simpler. For. Ecosyst. 3: 18. DOI: 10.1186/s40663-016-0075-6
  • Mauri A.; Strona G. & San-Miguel-Ayanz J. 2016: A high-resolution pan-European tree occurrence dataset. figshare. Collection. DOI: 10.6084/m9.figshare.c.3288407.v1
  • Mauri A., Strona G. & San-Miguel-Ayanz J. 2017: EU-Forest, a high-resolution tree occurrence dataset for Europe. Sci Data 4, 160123 (2017) DOI: 10.1038/sdata.2016.123
  • Marchi M., Castellanos-Acuna D., Hamann A., Wang T., Ray D. & Menzel A. 2020a: ClimateEU, scale-free climate normals, historical time series, and future projections for Europe. Scientific Data 7: 428. DOI: 10.1038/s41597-020-00763-0
  • Marchi M., Castellanos-Acuña D., Hamann A., Wang T., Ray D. & Menzel A. 2020: ClimateEU: Scale-free climate normals, historical time series, and future projections for Europe. figshare. Collection. DOI: 10.6084/m9.figshare.c.4846122.v1
  • Mátyás Cs., Berki I., Bidló A., Csóka Gy., Czimber K., Führer E., Gálos B,. Gribovszki Z., Illés G., Hirka A. & Somogyi Z. 2018: Sustainability of forest cover under climate change on the temperate-continental xeric limits. Forests 9: 489. DOI: 10.3390/f9080489.
  • Mátyás Cs., Beran F., Dostál J., Čáp J., Fulín M., Vejpustková M., Božič G., Balázs P. & Frýdl J. 2021: Surprising Drought Tolerance of Fir (Abies) Species between Past Climatic Adaptation and Future Projections Reveals New Chances for Adaptive Forest Management. Forests 12: 821. DOI: 10.3390/f12070821
  • Rajczak J. & Schär C. 2017: Projections of future precipitation extremes over Europe: A multimodel assessment of climate simulations. Journal of Geophysical Research: Atmospheres 122: 10,773–10,800. DOI: 10.1002/2017JD027176
  • Rehschuh R., Mette T., Menzel A. & Buras A. 2017: Soil properties affect the drought susceptibility of Norway spruce. Dendrochronologia 45: 81–89. DOI: 10.1016/j.dendro.2017.07.003
  • Sallmannshofer M., Chakraborty D., Vacik H., Illés G., Löw M., Rechenmacher A., Lapin K., Ette S., Stojanovic D., Kobler A. et al. 2021: Continent-Wide Tree Species Distribution Models May Mislead Regional Management Decisions: A Case Study in the Transboundary Biosphere Reserve Mura-Drava- Danube. Forests 12: 330. DOI: 10.3390/f12030330
  • Scherrer D., Massy S., Meier S., Vittoz P. & Guisan A. 2017: Assessing and predicting shifts in mountain forest composition across 25 years of climate change. Divers. Distrib. 23: 517–528. DOI: 10.1111/ddi. 12548
  • Schuldt B., Buras A., Arend M., Vitasse Y., Beierkuhnlein C., Damm A., Gharun M., Grams T.E.E., Hauck M., Hajek P., Hartmann H., Hiltbrunner E., Hoch G., Holloway-Phillips M., Körner C., Larysch E., Lübbe T., Nelson D.B., Rammig A., Rigling A., Rose L., Ruehr N.K., Schumann K., Weiser F., Werner C., Wohlgemuth T., Zang C.S. & Kahmen A 2020: A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl Ecol 45: 86–103. DOI: 10.1016/j.baae.2020.04.003.
  • Senf C., Buras A., Zang C.S. Ramming A. & Seidl R. 2020: Excess forest mortality is consistently linked to drought across Europe. Nat Commun 11: 6200. DOI: 10.1038/s41467-020-19924-1
  • Sousa-Silva R., Verbist B., Lomba Â., Valent P., Suškevics M., Picard O. et al. 2018: Adapting forest management to climate change in Europe: linking perceptions to adaptive responses. For. Policy Econ. 90: 22–30. DOI: 10.1016/j. forpol.2018.01.00
  • Spinoni J., Naumann G., Vogt J. & Barbosa P. 2015: European drought climatologies and trends based on a multiindicator approach. Glob Planet Change. 127: 50–57. DOI: 10.1016/j.gloplacha.2015.01.012.
  • Thurm E.A., Hernandez L., Baltensweiler A., Ayan S., Rasztovits E., Bielak K., Zlatanov T.M., Hladnik D., Balic B., Freudenschuss A. et al. 2018: Alternative tree species under climate warming in managed European forests. For. Ecol. Manag. 430: 485–497.
  • Walentowski H., Falk W., Mette T., Kunz J., Bräuning A., Meinardus C .et al. 2017: Assessing future suitability of tree species under climate change by multiple methods: a case study in southern Germany. Ann. For. Res. 60: 101–126. DOI: 10.15287/afr.2016.789
  • Wunderlich R.F., Lin Y-P., Anthony J. & Petway J.R. 2019: Two alternative evaluation metrics to replace the true skill statistic in the assessment of species distribution models. Nature Conservation 35: 97–116. DOI: 10.3897/natureconservation.35.33918
  • Zscheischler J. & Seneviratne S.I. 2017: Dependence of drivers affects risks associated with compound events. Sci. Adv. 3: e1700263. DOI: 10.1126/sciadv. 1700263
  • Zscheischler J., Westra S., van den Hurk BJJM, Seneviratne SI, Ward PJ, Pitman A et al. 2018: Future climate risk from compound events. Nat. Clim. Change 8: 469–477. DOI: 10.1038/s41558-018-0156-3
  • Open Acces

    For non-commercial purposes, let others distribute and copy the article, and include in a collective work, as long as they cite the author(s) and the journal, and provided they do not alter or modify the article.

    Cite this article as:

    Illés, G. & Móricz, N. (2022): Investigating the climate analogue area of domestic tree species in the light of climate change. Bulletin of Forestry Science, 12(2): 91-112. (in Hungarian) DOI: 10.17164/EK.2022.06

    Volume 12, Issue 2
    Pages: 91-112

    DOI: 10.17164/EK.2022.06

    First published:
    10 March 2023

    Related content

    12

    More articles
    by this authors

    10

    Related content in the Bulletin of Forestry Science*

  • Király, É., Kis-Kovács, G., Börcsök, Z., Kocsis, Z., Kottek, P., Mertl, T., Németh, G., Polgár, A. & Borovics, A. (2024): Mitigating climate change through wood industry measures in Hungary. Bulletin of Forestry Science, 14(1): 9-10.
  • Somogyi, Z. (2018): Climate-change induced forest decline can further enhance climate change. Bulletin of Forestry Science, 8(1): 211-226.
  • Csóka, Gy., Hirka, A., Csepelényi, M., Szőcs, L., Molnár, M., Tuba, K., Hillebrand, R. & Lakatos, F. (2018): Response of forest insects to the climate change (case studies). Bulletin of Forestry Science, 8(1): 149-162.
  • Mátyás, Cs., Kóczán-Horváth, A., Antoine, K. & Cuauhtémoc, S. (2018): Juvenile height growth response of sessile oak populations to simulated climatic change based on provenance test data. Bulletin of Forestry Science, 8(1): 131-148.
  • Illés, G. (2018): Predicting the climate change induced yield potential changes of sessile oak stands. Bulletin of Forestry Science, 8(1): 105-118.
  • Bidló, A. & Horváth, A. (2018): Role of soils in climate change. Bulletin of Forestry Science, 8(1): 57-71.
  • Mátyás, Cs. (2018): In the whirl of passing time. Bulletin of Forestry Science, 8(1): 9-10.
  • Illés, G. & Fonyó, T. (2016): Assessing the expected impact of climate change on forest yield potential in the AGRAGIS project. Bulletin of Forestry Science, 6(1): 25-34.
  • Mátyás, Cs. & Kramer, K. (2016): Adaptive management of forests and their genetic resources in the face of climate change. Bulletin of Forestry Science, 6(1): 7-16.
  • Csáki, P., Kalicz, P., Csóka, G., Brolly, G. B., Czimber, K. & Gribovszki, Z. (2014): Hydrological impacts of different land cover types in the context of climate change for Zala County. Bulletin of Forestry Science, 4(2): 65-76.
  • Gálos, B., Mátyás, Cs. & Jacob, D. (2012): The role of afforestation in mitigating climate change. Bulletin of Forestry Science, 2(1): 35-45.
  • Führer, E., Marosi, Gy., Jagodics, A. & Juhász, I. (2011): A possible effect of climate change in forest management. Bulletin of Forestry Science, 1(1): 17-28.
  • More articles by this authors in the Bulletin of Forestry Science

  • Illés, G., Kovács, G. & Heil, B. (2011): High resolution digital soil mapping in the Vaskereszt forest reserve. Bulletin of Forestry Science, 1(1): 29-43.
  • Kovács, G., Illés, G., Mészáros, D., Szabó, O., Vigh, A. & Heil, B. (2012): Evaluation of changes of site parameters in the Noszlop forest district. Bulletin of Forestry Science, 2(1): 47-60.
  • Illés, G., Kovács, G., Laborczi, A. & Pásztor, L. (2014): Developing a unified soil type database for County Zala Hungary using classification algorithms. Bulletin of Forestry Science, 4(2): 55-64.
  • Illés, G., Kollár, T., Veperdi, G. & Führer, E. (2014): Forests’ yield and height growth dependence on site conditions in County Zala Hungary. Bulletin of Forestry Science, 4(2): 77-89.
  • Illés, G., Fonyó, T., Pásztor, L., Bakacsi, Zs., Laborczi, A., Szatmári, G. & Szabó, J. (2016): Results of Agroclimate 2 project: Compilation of digital soil-type map of Hungary. Bulletin of Forestry Science, 6(1): 17-24.
  • Borovics, A., Illés, G., Juhász, J., Móricz, N., Rasztovits, E., Nimmerfroh-Pletscher, B., Unghváry, F., Pintér, T., Pödör, Z. & Jereb, L. (2018): The necessity and steps of establishing a forestry climate centre. Bulletin of Forestry Science, 8(2): 5-8.
  • Illés, G. & Schiberna, E. (2024): Assessing afforestation potential on the basis of ecological datasets. Bulletin of Forestry Science, 14(1): 7-8.
  • Berki, I., Rasztovits, E. & Móricz, N. (2014): Health condition assessment of forest stands – a new approach. Bulletin of Forestry Science, 4(2): 149-155.
  • Berki, I., Móricz, N., Rasztovits, E., Gulyás, K., Garamszegi, B., Horváth, A., Balázs, P. & Lakatos, B. (2018): Mortality and accelerating growth in sessile oak sites. Bulletin of Forestry Science, 8(1): 119-130.
  • Németh, T. M., Szabó, O. & Móricz, N. (2021): Comparative drought sensitivity analysis of young sessile oak and turkey oak trees in Somogy county (Hungary). Bulletin of Forestry Science, 11(1): 27-40.
  • * Automatically generated recommendations based on the occurrence of keywords given by authors in the titles and abstracts of other articles. For more detailed search please use the manual search.